Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii.

نویسندگان

  • Irit Tozik
  • Qiaojia Huang
  • Christian Zwieb
  • Jerry Eichler
چکیده

The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukaryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 of the halophilic archaeon Haloferax volcanii have been expressed and purified, and used to reconstitute the ternary SRP complex. The availability of SRP components from a haloarchaeon offers insight into the structure, assembly and function of this ribonucleoprotein complex at saturating salt conditions. While the amino acid sequences of H.volcanii SRP19 and SRP54 are modified presumably as an adaptation to their saline surroundings, the interactions between these halophilic SRP components and SRP RNA appear conserved, with the possibility of a few exceptions. Indeed, the H.volcanii SRP can assemble in the absence of high salt. As reported with other archaeal SRPs, the limited binding of H.volcanii SRP54 to SRP RNA is enhanced in the presence of SRP19. Finally, immunolocalization reveals that H.volcanii SRP54 is found in the cytosolic fraction, where it is associated with the ribosomal fraction of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii.

Across evolution, the signal recognition particle pathway targets extra-cytoplasmic proteins to membranous translocation sites. Whereas the pathway has been extensively studied in Eukarya and Bacteria, little is known of this system in Archaea. In the following, membrane association of FtsY, the prokaryal signal recognition particle receptor, and SRP54, a central component of the signal recogni...

متن کامل

Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii.

Across evolution, type I signal peptidases are responsible for the cleavage of secretory signal peptides from proteins following their translocation across membranes. In Archaea, type I signal peptidases combine domain-specific features with traits found in either their eukaryal or bacterial counterparts. Eukaryal and bacterial type I signal peptidases differ in terms of catalytic mechanism, ph...

متن کامل

Evidence for farnesol-mediated isoprenoid synthesis regulation in a halophilic archaeon, Haloferax volcanii.

Farnesol strongly inhibited growth of a halophilic archaeon, Haloferax volcanii, with an IC50 value of only 2 microM (0.4 microgram/ml) in rich medium and 50 nM (0.01 microgram/ml) in minimal medium without lysis. Other isoprenoid alcohols such as isopentenol, dimethylallyl alcohol, geraniol, and geranylgeraniol at 500 microM did not affect its growth. Mevalonate, which is the precursor of all ...

متن کامل

A predicted geranylgeranyl reductase reduces the ω-position isoprene of dolichol phosphate in the halophilic archaeon, Haloferax volcanii.

In N-glycosylation in both Eukarya and Archaea, N-linked oligosaccharides are assembled on dolichol phosphate prior to transfer of the glycan to the protein target. However, whereas only the α-position isoprene subunit is saturated in eukaryal dolichol phosphate, both the α- and ω-position isoprene subunits are reduced in the archaeal lipid. The agents responsible for dolichol phosphate saturat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 30 19  شماره 

صفحات  -

تاریخ انتشار 2002